

The Goal To *understand* the current state of pedestrian safety in our urban communities, and *identify* factors that impact pedestrian safety vis-a`-vis e-scooter services.

Key Challenge

Real-time detection and **logging** of encounter data between pedestrian participants and e-scooters directly from a *resource-constrained* smartwatch with *minimal* encounter notification frequency.

The Approach

- Detect e-scooters near a pedestrian participant via the smartwatch in real-time.
- Trigger participant feedback and collect e-scooter related encounter data.
- Identify mobility trends and potentially unsafe spatio-temporal hotspots for pedestrians on-campus.

The Crowd-Sensing Setup

- Encounter detection and related feedback collection from a custom *smartwatch app* based on BLE data broadcasted by e-scooters.
- Loaned smartwatch equipped with encounter data collection app paired to the *participant's* smartphone.
- **77** participants across *two* distinct environments: UTSA's Main and Downtown campuses.
- A month-long study for each participant lasting from April 2019-June 2019.

Impact of E-Scooters on Pedestrian Safety: A Field Study Using Pedestrian Crowd-Sensing

Anindya Maiti^{+1,} Nisha Vinayaga-Sureshkanth^{+2,} Murtuza Jadliwala², Raveen Wijewickrama², and Greg P. Griffin² ⁺ Equally contributing authors ¹University of Oklahoma ²University of Texas at San Antonio

1. *Predicted* from the sensed BLE data (E_P)

Pedestrian and E-scooter Encounters

2. Observed by the pedestrian participant (E_0)

Key Observations & Implications

Same Direction: Front of Pedestri Same Direction: Behind Pedestrian Opposite Direction Opposite Direction: Front of Pedestrian **Opposite Direction: Behind Pedestrian** Elevated Heart-Rate

Summary of observed (E₀) encounters for e-scooter moving direction and pedestrian line-of-sight combinations

Factor #1: Space

OBS: A vast majority of proximate encounters between e-scooter riders and pedestrians happened on narrow pedestrian paths such as sidewalks. **IMP**: Conflicts and safety challenges for pedestrians and riders sharing the path owing to few bike lanes and shared-use paths in the study areas.

TABLE III: Space: Encounters by functional classification.

		TES ^a		MEM ^b		PEM ^c	
	Functional Class ^d	E_P	E_O	E_P	E_O	E_P	E_C
	Arterial Streets	998	709	146.1	60.7	6.9	2.3
	Collector Streets	269	336	68.4	55.2	3.2	2.1
	Local Streets	1285	2255	176.0	171.8	8.3	6.6
	Shared-use Paths	102	119	306.0	432.6	14.5	16.
	Sidewalks	994	1163	617.8	470.7	29.2	18.
	Other/Unclassified	154	411	799.1	1410.0	37.8	54.
	Total	3802	4993	352.2	433.5	100.0	100

^a Total Encounters per Segment (TES) is the sum of all detected proximal pedestrian-scooter encounters in a network segment.

⁹ Mean Encounters per Mile (MEM) is the average number of encounters per segment divided by the length of the segment in miles.

^c Percent Encounters per Mile (PEM) refers to the percentage of TESw.r.t sum total of all encounters over all segments.

^d Arterial streets include OpenStreetMap (OSM) API tags "primary" and "secondary". Collector streets include OSM tags "tertiary". Local streets include OSM tags "residential" and "service". Shared-use paths include OSM tags "path" and "cycleway". Sidewalks include OSM tags "footway" and "pedestrian". Other/unclassified uses all other OSM tags.

Factor #2: Time

OBS: The average #encounters on specific days are higher than the rest of the week showing the occurrence of encounters follows closely with class schedules. **IMP**: Higher chances of pedestrian-rider collisions and encounters near the class buildings during the days with the highest number of classes.

Number of predicted (E_P) and observed (E_O) encounters in each of the 102 1-hour periods (sorted chronologically), between 06:00-23:00 for six days of a week, plotted along with the number of classes scheduled in the corresponding time periods.

Factor #3: Space & Time

OBS: Local street encounters peak during mid-day and at 17:00, suggesting an increased interaction with pedestrians during lunch breaks and commuting.

IMP: Higher chances of conflicts for pedestrians and riders sharing the streets during those peak hours exacerbated by the lack of sidewalks in the areas.

Number of predicted (E_P) and observed (E_O) encounters in each 1-hour time period between 06:00-23:00, plotted for each functional classification of road network segments. The x-axis unit represents the next 1-hour time period

Identified hotspot areas could be targeted to optimize transit options and remediate lack of Takeaways adequate critical infrastructure. The timing of frequent e- scooter encounters could be used in combination with other travel

modes to compliment last-mile connections and reduce conflicts. Space-time coordination may be more critical for special events and in separated land uses, as compared with mixed-use settings with activities spread throughout the night and day.

Acknowledgement: This research was supported by the United States National Science Foundation (NSF) under award number 1829066 (previously 1637290).

